
MIE2019

Symposium on Manufacturing and Industrial Engineering

INTEGER KARHUNEN–LOÈVE TRANFORM ON BEAGLEBONE-BLACK BOARD

FOR LOSSLESS HYPERSPECTRAL IMAGE COMPRESSION

N.D. Mohd Ridzuan Tan1, N.R. Mat Noor1#, W.A.F.W. Othman1, E.A. Bakar2, A.F. Hawary2

1School of Electrical and Electronic Engineering,

2School of Aerospace Engineering,

Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia.

#Corresponding Author’s Email: nrmn@usm.my

ABSTRACT: The research in this paper concerned with the Lossless hyperspectral image compression

for satellite imagery using Integer Karhunen–Loève Tranform (KLT) on embedded system BeagleBone

Black Board. The Integer KLT is selected as the transform for compression due to it showing superior

performance in decorrelating the spectral component in hyperspectral images compared to other

algorithms. The objective of this research is to develop an Integer KLT algorithm to implement it into

the embedded system BeagleBone Black board. Clustering technique is used to reduce the

computational complexity of the image. The performance of the algorithm on the board in terms of

execution time is investigated. The implementation of Integer KLT algorithm is executed into

BeagleBone Black board and Eclipse software is used to develop the algorithm before executing the

algorithm into BeagleBone Black board for testing the performance, profiling the execution time and

comparing it with other embedded platforms which is a low-power DSP platform. Clustering technique

proves to reduce the complexity of algorithm, which fastens the execution time of compression while

beaglebone-black implementation shows a faster execution time compared to low-power DSP platform.

KEYWORDS: Integer KLT; Beaglebone Black Board implementation; Execution time

1.0 INTR ODU CTION

In this current era, as technologies constantly being improved, the development of specific

technologies such as cameras that are dedicated into Earth observing satellites are created and

improved. These satellites are suitable for constant surveillance with no interruption as compared

to airborne platforms (M. Borengasser, W. S. Hungate, & Watkins, 2008). The images captured by

the satellites are called hyperspectral images. These hyperspectral images have a wide applications

such as atmospheric detecting, remote sensing (M. Borengasser et al., 2008), military affairs (Yuen

& Bishop, 2009) and so-on. While these images significantly helped the humankind, there are still

an on-going common data-capacity related problems which are the limited amount of on-board

memory and the limited speed of the communication channel between a satellite and ground

station.

 In hyperspectral remote sensing where the amount of data usually is in the range of hundreds of

bands, the problems become even more serious (Noor & Vladimirova, 2012). In order to overcome

this problem, a compression system is introduced. Integer Karhunen-Loeve Transform (KLT) was

proposed in this research to achieve lossless hyperspectral image compression. Integer KLT is a

modified version of the original KLT which is the lossless version of KLT. In KLT algorithm, there

exists a non-integer output (floating-point) which actually leads to a lossy transformation causing

some amount of data to be loss. By introducing matrix factorizations such as eigenvector and PLUS

matrices, the Integer KLT is able to eliminate the floating-point output and achieves a lossless data

compression process (Egho & Vladimirova, 2014; Noor, 2016). In other words, there is zero missing

data during the compression and decompression by using Integer KLT algorithm.

Embedded systems are often used in the recent trends. That is to say, an embedded system is a

specific-purpose system where it works akin to a computer. It has a combination of a computer’s

MIE2019

Symposium on Manufacturing and Industrial Engineering

hardware and software function where it is capable of being programmable to be designed in a

specific manor or function. Precisely, in this research, one of the embedded system that will be used

is the BeagleBone Black Board.

2.0 OVERVIEW ON HARDWARE AND SOFTWARE SET-UP

This project involves the implementation and the optimization of the integer KLT algorithm for

hyperspectral image compression using the beaglebone-black board. The hardware

implementation, beaglebone-black uses Linux system with a memory of 512MB DDR3L and runs

at the speed of 800MHz. The beaglebone-black is connected to the PC via USB cable where coding

algorithm is able to transfer the code files into beaglebone-black.

To run the developed algorithm, a coding software Eclipse is used as it is compatible with

beaglebone-black by changing the configuration set-up in the GCC and G++ Linker Build Setting.

The project mainly uses clustering technique for hyperspectral compression since it is one of the

optimization technique that can be used to reduce the computation complexity of algorithm and it

also helped to increase the lossless compression ratio performance.

3.0 IMPLEMENTATION OF INTEGER KLT ON BEAGLEBONE-BLACK BOARD

The basic vectors of KLT are the eigenvectors of matrix covariance where it removes the

correlation of neighbouring pixels. Depending on the data, KLT is one of the best transform

that are effective in data decorrelation if we ignore the floating-point output matrix it

produce. Integer KLT algorithm, a modified version of KLT that are used for this project

starts with the calculation of mean of each bands. Once the mean is rounded off, it is

subtracted from the original hyperspectral image, H. At this point, covariance,

eigenvector/eigenvalue and the P,L,U and S matrix factorization are done towards the

image. When the development of Integer KLT algorithm are done, the code is then uploaded

onto the beaglebone-black through Ubuntu terminal platform.

Clustering in Integer KLT is performed by encoding a group of z bands rather than the total

number of bands, Z in a hyperspectral image, where z ≤ Z (Noor, 2016). A normal clustering which

is a local decorrelation within each cluster are sufficient to be used. Encoding process of the AVIRIS

and Hyperion hyperspectral image are represented by the clustering process that is repeated for a

number of iteration, c, where :

The clustering levels for an AVIRIS of a total 224 bands and Hyperion of a total of 196 bands has

few different levels in cluster size. The minimum number of cluster, c, is the maximum cluster size,

which is Z/c. So the values of c are dependant of the number of bands Z. However, to avoid the

Integer KLT performance as spectral decorrelator being ineffective, the cluster size Z must not be

lower than four. Table 1 shows the AVIRIS and Hyperion clustering levels. The lowest number of

cluster, c requires a huge volume of memory. So in certain cases of low-powered embedded

platform, c = 1 cannot run on the platforms due to its large memory.

Table 1: Clustering Levels for AVIRIS and Hyperion

A
V

IR
IS

Number of Cluster, c Cluster Size, Z/c

H
y

p
er

io
n

Number of Clusters, c Cluster Size, Z/c

1 (lowest) 224 1 (lowest) 196

2 112 2 98

4 56 4 49

7 32 7 28

8 28 14 14

14 16 28 7

16 14 49 (highest) 4

28 8

32 7

56 (highest) 4

𝑐 =
𝑍

𝑧
 (1)

MIE2019

Symposium on Manufacturing and Industrial Engineering

10 images are selected from AVIRIS and Hyperion dataset respectively as test images for the

purpose of this project. Each AVIRIS images are cropped to a size of 512×512×224 while each

Hyperion image datasets are cropped to 256×256×196 size. Table 2 shows the AVIRIS and

Hyperion Image datasets along with the abbreviation of each hyperspectral image used for testing.

Table 2: AVIRIS and Hyperion Image Datasets
AVIRIS

Row – 512 ; Column – 512 ; Band - 224

Hyperion

Row – 256 ; Column – 256 ; Band - 196

Abbreviation Hyperspectral Image Abbreviation Hyperspectral Image

Cuprite1 Cuprite Scene 1 Atturbah EO1H1660512002107110PZ_SGS_01

Jasper1 Jasper Ridge Scene 1 Benoni EO1H1700782002055110PY_SGS_01

Low1 Low Altitude Scene 1 Boston EO1H0120312001129111P1_PF1_01

Low5 Low Altitude Scene 5 Coolamon EO1H09208420020533110PY_AGS_01

Lunar1 Lunar Lake Scene 1 Dubbo1 EO1H0910822002071110PY_AGS_01

YSCal0 Yellowstone Calibrated Scene 0 Edenton EO1H0140362001127110PP_AGS_01

YSCal3 Yellowstone Calibrated Scene 3 Greenland EO1H0090112001140111PP_PF1_01

YSCal10 Yellowstone Calibrated Scene 10 Maizhokunggar EO1H1370392002032110PZ_SGS_01

YSCal11 Yellowstone Calibrated Scene 11 Okha EO1H1090232002092110PZ_AKS_01

YSCal18 Yellowstone Calibrated Scene 18 Portobago EO1H0150332001134111P1_AGS_01

These images are used to test for Integer KLT hyperspectral image compression on beaglebone-black

board while the average of the images are collected.

4.0 EXPERIMENTAL RESULT

The execution time of Integer KLT algoritm implementation on beaglebone-black board is evaluated

for each datasets based on the number of clustering. The average execution time of the algorithm were

tabulated for the average execution time of 10 images for each AVIRIS and Hyperion datasets

respectively. Generally, the higher the number of cluster and the smaller the cluster size, it can be seen

that clustering allows the speed up of the compression of image. The result in Table 3 and Table 4 shows

that clustering technique is able to improve the execution time. This is due to the fact that the number

of spectral bands that are to be encoded in each cluster are reduced significantly. The number of bands

in Integer KLT are one of the main factors that contributed to the complexity of the algorithm. So, when

there are a smaller number of bands per cluster, the complexity of overhead information are reduced

which leads to the improvement of execution time. While referring back to Table 1 where the clustering

size starts with 224 and 196, the implementation can only starts with 32 and 98 respectively due to

memory problem of the hardware. This is because bigger cluster size required larger volume of memory

which is unable to be run on the hardware implementation.

Table 3: AVIRIS Average Execution Time (seconds) on Beaglebone-Black Board
Cluster Size (Number of cluster) 32 (7) 28 (8) 16 (14) 14 (16) 8 (28) 7 (32) 4(56)

Average Execution Time (seconds) 131.984 121.558 90.853 86.549 71.966 69.523 62.21

Table 4: Hyperion Average Execution Time (seconds) on Beaglebone-Black Board
Cluster Size (Number of cluster) 98 (2) 49 (4) 28 (7) 14 (14) 7 (28) 4 (49)

Average Execution Time (seconds) 70.435 38.410 28.919 18.751 15.157 13.718

The performance analysis are obtained by comparing the performance of Integer KLT on beaglebone-

black with other hardware implementation which, in this case are comparing with DSP OMAP-L137

from the research paper by Noor(Noor, 2016). Table 5 shows the cluster size and the execution time for

the low-power DSP and Beaglebone-black board.

MIE2019

Symposium on Manufacturing and Industrial Engineering

Table 5: Comparison with other Implementation (in seconds)

A
V

IR
IS

Cluster Size
Execution time (seconds)

H
y

p
er

io
n

Cluster Size
Execution time (seconds)

DSP OMAP-L137 Beaglebone-Black DSP OMAP-L137 Beaglebone-Black

32 314.67 131.984 98 270.46 70.435

28 302.38 121.558 49 127.34 38.410

16 204.64 90.853 28 67.01 28.919

14 196.72 86.549 14 43.56 18.751

8 149.88 71.966 7 32.22 15.157

7 145.98 69.523 4 27.54 13.718

4 124.96 62.210 7 32.22 15.157

The performance are measured based on the type of drives and RAM available for the hardwares. For

the low-power DSP, some of the key features taken from research paper by Noor are such that it is a

dual-core DSP chip, has 64 MB of SDRAM and runs at 300MHz whereas for Beaglebone-black has 512

MB DDR3L SDRAM and runs at 800MHz. Referring to Table 5, the execution time for Beaglebone-black

is better than DSP implementation. This is because of a couple of reasons which are the different type

of processor used in both hardware implementation, the operating system and the coding

implementation approach. Beaglebone-black runs on DDR3 which requires less power but able to run

faster compared to DSPs’ dual-core chipe. Besides, compared to DSP 64 MB of SDRAM, beaglebone-

black has a faster and greater size at 512 MB SDRAM which allows a better processing speed. The

operating system for DSP uses processor instrumentation set while beaglebone-black uses Linux based

operating system which may affect the execution time.

5.0 REFERENCES

Egho, C., & Vladimirova, T. (2014, 14-17 July 2014). Adaptive hyperspectral image compression using the

KLT and integer KLT algorithms. Paper presented at the 2014 NASA/ESA Conference on

Adaptive Hardware and Systems (AHS).

M. Borengasser, W. S. Hungate, & Watkins, R. (2008). Hyperspectral Remote Sensing : Principles and

Application. (Boca Raton: CRC Press.), 130.

Noor, N. R. M. (2016). Karhunen-Loève transform based lossless hyperspectral image compression for

space applications

Conference Proceedings.

Noor, N. R. M., & Vladimirova, T. (2012, 25-28 June 2012). Parallel implementation of lossless clustered

integer KLT using OpenMP. Paper presented at the 2012 NASA/ESA Conference on Adaptive

Hardware and Systems (AHS).

Yuen, P., & Bishop, G. (2009). Hyperspectral Algorithm Development for Military Applications: A Multiple

Fusion Approach.

